H2(g) + CO2(g) ⇌ H2O(g) + CO(g)
- [H2O] = 0,00468M
- [CO] = 0,00468M
- [H2] = 0,00532M
- [CO2] = 0,00532M
\[ K = \frac {[\mathrm{H_2O}][\mathrm{CO}]}{[\mathrm{H_2}][\mathrm{CO_2}]} = \frac {0,00468\mathrm{M} \cdot 0,00468\mathrm{M}}{0,00532\mathrm{M} \cdot 0,00532\mathrm{M}} = 0,77387077 \approx 0,774 \hspace{100cm}\]
\[K= \frac {[\text{NO}]^2}{[\text{N}_2][\text{O}_2]} \hspace{100cm} \hspace{100cm} \]
\[1,4 \cdot 10^{-4} = \frac {x^2}{0,036\text{M} \cdot 0,0089\text{M}} \hspace{100cm} \]
\[0,036\text{M} \cdot 0,0089\text{M} \cdot 1,4 \cdot 10^{-4} = x^2 \hspace{100cm} \]
\[x = \sqrt{0,036\text{M} \cdot 0,0089\text{M} \cdot 1,4 \cdot 10^{-4}} = 2,117924 \cdot 10^{-4}\text{M} \approx 2,1 \cdot 10^{-4}\text{M} \hspace{100cm}\]
2HI(g) ⇌ H2(g) + I2(g)
\[K = \frac {[\text{H}_2][\text{I}_2]}{[\text{HI}]^2} \hspace{100cm}\]
\[0,020 = \frac {0,0200\text{M} \cdot [\text{I}_2]}{(1,33\text{M})^2} \hspace{100cm}\]
\[[\text{I}_2] =0,020 \cdot \frac {(1,33\text{M})^2}{0,0200\text{M}} = 1,7689\text{M} \approx 1,8\text{M} \hspace{100cm}\]
a.
\[Q = \frac {[\text{H}_2][\text{I}_2]}{[\text{HI}]^2} = \frac {1,00 \cdot 1,00}{1,00^2} = 1 > K = 1,36 \cdot 10^{-3} \hspace{100cm}\]
Eftersom \(Q > K\) kommer reaktionen att gå åt vänster.
b.
[HI] | [H2] | [I2] | ||
f.r. | 1,00 | 1,00 | 1,00 | M |
∆ | \(+2x\) | \(-x\) | \(-x\) | M |
v.j. | \(1,00+2x\) | \(1,00-x\) | \(1,00-x\) | M |
\[K = \frac {[\text{H}_2][\text{I}_2]}{[\text{HI}]^2} \hspace{100cm} \]
\[1,36 \cdot 10^{-3} = \frac {(1,00-x)(1,00-x)}{(1,00+2x)^2} = \frac {(1,00-x)^2}{(1,00+2x)^2} \hspace{100cm} \]
\[\sqrt{1,36 \cdot 10^{-3}} = \frac {1,00-x}{1,00+2x} \hspace{100cm} \]
\[x = 0,896965 \hspace{100cm} \]
\[[\text{HI}] = (1,00-2x)\text{M} = (1,00 - 2 \cdot 0,896965)\text{M} = 2,79393\text{M} \approx 2,79\text{M} \hspace{100cm} \]
\[[\text{H}_2] = [\text{I}_2] = (1,00 - x)\text{M} = (1,00 - 0,896965)\text{M} = 0,103035\text{M} \approx 0,103\text{M} \hspace{100cm}\]
a.
O2(g) + N2(g) ⇌ 2NO(g)
\[Q = \frac {[\text{NO}]^2}{[\text{O}_2][\text{N}_2]} = \frac {(0,22\text{M})^2}{1,0\text{M} \cdot 1,0\text{M}} = 0,0484 < K = 0,097 \hspace{100cm}\]
Reaktionen kommer att gå åt höger.
[O2] | [N2] | [NO] | ||
f.r. | \[1,0\] | \[1,0\] | \[0,22\] | M |
∆ | \[-x\] | \[-x\] | \[+2x\] | M |
v.j. | \[1,0-x\] | \[1,0-x\] | \[0,22+2x\] | M |
\[K = \frac {[\text{NO}]^2}{[\text{O}_2][\text{N}_2]} \hspace{100cm} \]
\[0,097 = \frac {(0,22 + 2x)^2}{(1,0-x)(1,0-x)} = \frac {(0,22 + 2x)^2}{(1,0-x)^2} \hspace{100cm} \]
\[\sqrt{0,097} = \sqrt{\frac {(0,22 + 2x)^2}{(1,0-x)^2}} = \frac {0,22 + 2x}{1,0-x} \hspace{100cm} \]
\[\sqrt{0,097} \cdot (1,0-x) = 0,22 + 2x \hspace{100cm} \]
\[\sqrt{0,097} - \sqrt{0,097} \cdot x = 0,22 + 2x \hspace{100cm} \]
\[\sqrt{0,097} - 0,22 = 2x + \sqrt{0,097} \cdot x = x(2 + \sqrt{0,097}) \hspace{100cm} \]
\[x = \frac {\sqrt{0,097} - 0,22}{2 + \sqrt{0,097}} = 0,03956317 \hspace{100cm} \]
\[[\text{O}_2] = [\text{N}_2] = (1,0 - x)\text{M} = (1,0 - 0,03956317)\text{M} = 0,96043683\text{M} \approx 0,96\text{M} \hspace{100cm} \]
\[[\text{NO}] = (0,22 + 2x)\text{M} = (0,22 + 2 \cdot 0,03956317)\text{M} = 0,29912635\text{M} \approx 0,30\text{M} \hspace{100cm}\]
\[K = \frac {[\mathrm{NH_3}]^2}{[\mathrm{N_2}][\mathrm{H_2}]^3} \hspace{100cm}\]
\[[\mathrm{NH_3}] = 0,070\mathrm{M} \hspace{100cm} \\ [\mathrm{N_2}] = 0,30\mathrm{M} \hspace{100cm} \\ [\mathrm{H_2}] = 0,20\mathrm{M} \hspace{100cm} \]
\[K = \frac {(0,070\mathrm{M})^2}{0,30\mathrm{M} \cdot (0,20\mathrm{M})^3} = 2,04166667\frac {\mathrm{M}^2}{\mathrm{M} \cdot \mathrm{M}^3} \approx 2,0\mathrm{M}^{-2} \hspace{100cm}\]
2BrCl ⇌ Br2 + Cl2
\[Q = \frac {[\text{Br}_2][\text{Cl}_2]}{[\text{BrCl}]^2} = \frac {0,15\text{M} \cdot 0,15\text{M}}{(0,30\text{M})^2} = 0,25 < K = 0,46 \hspace{100cm}\]
Reaktionen kommer att gå åt höger.
[BrCl] | [Br2] | [Cl2] | ||
f.r. | \[0,30\] | \[0,15\] | \[0,15\] | M |
∆ | \[-2x\] | \[+x\] | \[+x\] | M |
v.j. | \[0,30 - 2x\] | \[0,15 + x\] | \[0,15 + x\] | M |
\[K = \frac {[\text{Br}_2][\text{Cl}_2]}{[\text{BrCl}]^2} \hspace{100cm} \]
\[0,46 = \frac {(0,15+x)(0,15+x)}{(0,30-2x)^2} = \frac {(0,15+x)^2}{(0,30-2x)^2} \hspace{100cm} \]
\[\sqrt{0,46} = \sqrt{\frac {(0,15+x)^2}{(0,30-2x)^2}} = \frac {0,15+x}{0,30-2x} \hspace{100cm} \]
\[\sqrt{0,46} \cdot (0,30 - 2x) = 0,15 + x \hspace{100cm} \]
\[\sqrt{0,46} \cdot 0,30 - \sqrt{0,46} \cdot 2x = 0,15 + x \hspace{100cm} \]
\[\sqrt{0,46} \cdot 0,30 - 0,15 = x + \sqrt{0,46} \cdot 2x \hspace{100cm} \]
\[\sqrt{0,46} \cdot 0,30 - 0,15 = x\left(1 + \sqrt{0,46} \cdot 2 \right) \hspace{100cm} \]
\[\frac {\sqrt{0,46} \cdot 0,30 - 0,15}{1 + \sqrt{0,46} \cdot 2} = x = 0,02269072 \hspace{100cm} \]
\[[\text{BrCl]} = (0,30 - 2x)\text{M} = (0,30 - 2 \cdot 0,02269072)\text{M} = \hspace{100cm} \]
\[= 0,25461857\text{M} \approx 0,25\text{M} \hspace{100cm}\]
AgCl(s) ⇌ Ag+(aq) + Cl–(aq)
\[K_{\text{s, AgCl}} = [\text{Ag}^+][\text{Cl}^-] = 1,1 \cdot 10^{-10}\text{M}^2 \hspace{100cm} \]
\[[\text{Ag}^+] = [\text{Cl}^-] = c_{\text{AgCl}} \hspace{100cm} \]
\[(c_{\text{AgCl}})^2 = 1,1 \cdot 10^{-10}\text{M}^2 \hspace{100cm} \]
\[c_{\text{AgCl}} = \sqrt{1,1 \cdot 10^{-10}\text{M}^2} = 1,0488088 \cdot 10^{-5}\text{M} \hspace{100cm} \]
\[\begin{aligned} n_{\text{AgCl}} &= c_{\text{AgCl}} \cdot V = 1,0488088 \cdot 10^{-5}\text{mol/dm}^3 \cdot 1,0\text{dm}^3 = \hspace{100cm} \\ &= 1,0488088 \cdot 10^{-5}\text{mol} \end{aligned}\]
\[\begin{aligned} m_{\text{AgCl}} &= n_{\text{AgCl}} \cdot M_{\text{AgCl}} = \hspace{100cm} \\ &= 1,0488088 \cdot 10^{-5}\text{mol} \cdot (107,9 + 35,45)\text{g/mol} = \\ &= 1,50346748 \cdot 10^{-3}\text{g} \approx 1,5\text{mg} \end{aligned}\]