Magnus Ehingers undervisning

Allt du behöver för A i Biologi, Kemi, Bioteknik, Gymnasiearbete m.m.

Kemi 2

Administration

Beräkning av jämviktskoncentrationer efter att jämvikten rubbats

Skarmavbild 2017 05 21 kl. 19.47.57I den här videogenomgången visar jag hur jämviktskoncentrationerna förändras när man rubbar jämvikten H2(g) + I2(g) ⇌ 2HI(g). För att spara tid och plats hoppade jag över den andra beräkningen.

För dig som ändå undrar följer här nedan hur man gör den. Vi börjar med att ställa upp en tabell, där vi för in startkoncentrationerna och tecknar den förändring som skett när systemet åter har nått jämvikt:

  [H2] [I2] [HI]  
cstart 0,121 0,021 0,158 M
 Δ x x + 2x M
cjämvikt  0,121 – x 0,021 – x 0,158 + 2x M

 

Vi tecknar jämviktskonstanten, och med hjälp av jämviktskoncentrationerna vi tecknade i tabellen ovan beräknar vi x:

\(K = \frac {[\text{HI}]^2}{[\text{H}_2][\text{I}_2]}\)

\(54=\frac {(0,158+2x)^2}{(0,121-x)\cdot (0,021-x)}\)

\(54=\frac {4x^2+0,632x+0,024964}{x^2-0,142x+0,002541}\)

\(54x^2-7,81x+0,137214 = 4x^2+0,632x+0,024964\)

\(50x^2 - 8,442x + 0,11225 = 0\)

Rotformeln (pq-formeln) ger två lösningar:

\(x = -\frac {8,442}{2 \cdot 50} \pm \sqrt{\left( \frac {8,442}{2 \cdot 50} \right)^2 - \frac {0,11225}{50}}\)

x1 = 0,0148531

x2 = 0,151147

Vi kan konstatera att x2 är orimlig, eftersom att det skulle göra koncentrationerna [H2] och [I2] negativa. Alltså är x1 = 0,0148531 den enda rimliga lösningen. Vi sätter in dem i uttrycken för [H2], [I2] och [HI] och beräknar koncentrationerna:

[H2] = (0,121 – x)M = (0,121 – 0,0148531)M = 0,1061469M ≈ 0,106M

[I2] = (0,021 – x)M = (0,021 – 0,0148531)M = 0,0061469M ≈ 0,00615M

[HI] = (0,158 + 2x)M = (0,158 + 2 · 0,0148531)M = 0,1877062M ≈ 0,188M

 

   

Också intressant: